【プレスリリース】欠陥修復した酸化グラフェンから優れた電気特性をもつバンド伝導の観察に成功  高結晶性グラフェン薄膜のスケーラブル製造への道筋を開拓

2016.9.6

大阪大学 小林慶裕

本研究成果のポイント

高密度に欠陥構造※1 を有する酸化グラフェン※2 を構造修復することにより、優れたバンド伝導※3 をもつ、高結晶性のグラフェン薄膜の形成に成功
・これまで、酸化グラフェンは多くの欠陥構造を有するため、トランジスタ性能の指標となるキャリア移動度※4 は非常に遅かったが、エタノール高温加熱還元処理※5 により向上した
・今後、高結晶性グラフェン薄膜のスケーラブル※6 製造技術への応用に期待

概要

大阪大学大学院工学研究科の根岸良太助教、小林慶裕教授、北陸先端科学技術大学院大学の赤堀誠志准教授、名古屋大学大学院工学研究科の伊藤孝寛准教授、あいちシンクロトロン光センター渡辺義夫リエゾン副所長らの研究グループは、還元過程において 微量の炭素源ガス(エタノール)を添加した高温(~1100℃)加熱還元処理により欠陥構造の修復を促進させることで飛躍的に酸化グラフェンの結晶性を向上させ、還元処理をした酸化グラフェン薄膜においてグラフェン本来の電気伝導特性を反映したバンド伝導の観察に初めて成功しました。(図1)

このバンド伝導の発現により、還元処理をした酸化グラフェン薄膜としては現状最高レベルのキャリア移動度(~210cm2/Vs)を達成しました。

本成果によって、酸化グラフェンは、還元処理によりグラフェン薄膜の生成が可能なため、グラフェンを利用した電子デバイスやセンサーなど様々な応用が期待されています。

本研究成果は、日本時間7月1日(金)午後6時に英国の科学オープンアクセス誌「Scientific Reports (Nature Publishing Group)」に公開されました。

※1 欠陥構造
グラフェンは炭素原子が蜂の巣状(ハニカム状)に結合したシート状の物質であり、欠陥構造とはこのハニカム状の構造の変形や、カーボンそのものが欠損した穴、カーボンがそれ以外の元素(酸素など)と結合した状態等を指す。

※2 酸化グラフェン
酸化処理によりグラファイトから化学的に剥離させた厚さ1原子層分のシート状の材料。水や有機溶媒に溶け、液体として取り扱うことができるため、任意基板へ塗布するだけでグラフェン薄膜を容易に大面積で作成することができる。しかし、酸化処理により多くの欠陥構造や酸素含有基を含むため、その伝導特性は高配向性グラファイト(HOPG)から得られるグラフェンと比較して著しく低い。このことが酸化グラフェン材料のデバイス応用に向けて大きなボトルネックとなっている。

※3 バンド伝導
キャリアが周期的電子構造を持つ固体結晶内を波として伝搬する伝導機構。

※4 キャリア移動度
固体物質内におけるキャリア(電子・ホール)の動きやすさを表わし、トランジスタ性能の基本的な指標となる。

※5 還元処理
グラファイトの酸化処理により合成された酸化グラフェンは多くの酸素含有基を含むため絶縁性を示す。電子デバイスへの応用には、これら酸素含有基を取り除くための還元処理が必須となる。

※6 スケーラブル
製造プロセスやネットワークシステムなどにおいて現時点では小規模なものであるが、リソースの追加により大規模なものへ拡張できる能力。

参考URL: 欠陥修復した酸化グラフェンから優れた電気特性をもつバンド伝導の観察に成功 高結晶性グラフェン薄膜のスケーラブル製造への道筋を開拓
参考論文: Band-like transport in highly crystalline graphene films from defective graphene oxides